Consistency of orthogonal series density estimators based on grouped observations

نویسنده

  • Ewaryst Rafajlowicz
چکیده

The aim of this note is to indicate that nonparametric orthogonal series estimators of probability densities retain the mean integrated square error (MISE) consistency when observations are grouped to the points of a uniform grid (prebinned). This kind of grouping is typical for computer rounding errors and may also be useful in data compression, before calculating estimates, e.g., using the FFT. The main result shows that MISE consistency holds for all square-integrable densities under mild conditions on the grid step size. Affiliation and Address for Correspondence: Institute of Engineering Cybernetics, Technical University of Wroc law Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland email [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

Density Estimators for Truncated Dependent Data

In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

PREVENTING THE DIRAC DISASTER: Wavelet Based Density Estimation

This paper addresses the problem of choosing the optimal number of basis functions in constructing wavelet series density estimators. It is well known that projection estimators tend to overrt the density if the number of basis functions in the orthogonal expansion is too large. In extreme cases the estimator is close to the Dirac function concentrated at the observations. We propose a roughnes...

متن کامل

@bullet a Comparison of Cross-validation Techniques in Density Estimation! (comparison in Density Estimation)

• • ~~~~~~ In the setting of nonparametric multivariate density estimation, theorems are established which allow a comparison of the Kullback-Leibler and the Least Squares cross-validation methods of smoothing parameter selection. The family of delta sequence estimators (including kernel, orthogonal series, histogram and histospline estimators) is considered. These theorems also show that eithe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1997